Register No.	A 1 5 1 1	0 08	010	370		
FACULTY OF ENGINEERING & TECHNOLOGY, SRM UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING						
		CVCV P TECT II		Year / Semester: VII Duration: 3 Periods E & SEMANTIC WEB 20 x 1 = 20 ingilator at the 45th minute after the mequality can be stated between used) Resources mulating semantics in OWL Predicate & Description in attisfies some attached conditions the discources of OWL: UnionOf g support in Ontologies d conclusion WSMO tching graph patterns VL		
A A DEL MAIL VIIVI CO, DIA VOII						
(MCQ sheet to	of the exam)	the invigilator of	at the 45 th	minute after the		
a) Arbitrary thin	gs b) Classes c) Arbitr	ary Values d) Re	sources	>		
a) Propositional c) Predicate & D	& discovery Discovery d) I	b) Predicate Propositional & D	e & Description	tion		
a) class equivale	ence b) extensions c)	1CSu ictions a	, O L. O	iono:		
4	is a pre-requisite for reclassification c) memb	easoning support ership d) Seman	in Ontologie ntics	es		
5. Every valid	OWL lite conclusion i	s a valid LP d) WSMO	con	nclusion		
6q a) HTML b	uery language is based) SPARQL c) XML	on matching gra d) OWL	iph patterns			
7. Which of the	e following is not a que	ery language? RDFS				
	and orid analysis can	be productively	for anomal	ies d) enumerate		

terms

9. WSDL-S is an
a) Extension of WSDL b) Ontology c) Extension of ontology d) Extension of SWSO
10. Ontology design in WSMO demands and supports
a) Encapsulation b) decoupling c) abstraction d) cohesion
11. in webservice movides knowed asset
a) Light semantic level b) Semantic level c) Syntactical level d) detailed level
12. The matching between two services inspite of description with different
key words is called
a) indirect matching b) exact matching c) direct matching d) inexact matching
13 architecture eliminates the need for installing the matchmaking
infrastructure either on the registry or requestor's side
a) centralized discovery architecture b) P2P discovery architecture
c) client server discovery architecture d) distributed discovery architecture
14 addresses the handling of heterogeneities that naturally arise in open environments like the web
a) Description b) mediation c) implementation d) conceptualization
15. In WSMO describes the interface for service consumption by a client. a) non-functional properties b) orchestration c) choreography d) capability
16 inherits the open-world assumption & non-unique name assumption
a) OWL-DL b) OWL- Lite c) OWL-Full d) OWL-DLP
17. OWL: ObjectProperty & OWL: Datatype-Property are the subclasses of
a) RDF b) XML c) OWL d) RDF-S
18. Semantic web service ontology = a) FLOWS+COLUMNS b) FLOWS+ROWS c) OWL+ROWS d) OWL-S+COLUMNS
19. Detailed semantic level in web service provides

- a) Keywords b) atomic services c) complex services d) implicit services
- 20. OWL stands for
- a) Ontology web language b) Opensource Web language
- c) Web Opensource Language d) Web Ontology Language

Part - B Answer any 5 questions

 $5 \times 4 = 20$

Sl. No	Question	Course Outcome	Company Statement Company (Statement Company)	Marks
21	Enumerate the shortcomings of traditional web service discovery	a	Knowledge	4
22	State why mediators are needed in WSMO.	b	Infer	4
23	Define the axiomatic semantics of "inverseOf".	b	Apply	4
24	What are the strict notions of upward compatibility between the OWL sub languages?	a	Knowledge	4
	Differentiate web services Vs Service in internet.	a	Knowledge	4
	List the functional requirements for SWSL.	a	Knowledge	4
	Write the architectural difference between the Centralized and P2P discovery architecture	ь	Infer	4

Sl.No	Question	Course Outcome	Bloom's Taxonomy	Marks
/ /	i) What problem would emerge if OWL:allValuesFrom is replaced by			8
	OWL:someValuesFrom. Illustrate it with suitable axiomatic semantics with reference to African Wildlife	b	Apply	4
(b)	ii) Explain why it is necessary to declare owl:class as a subclass of rdfs:class (OR)			
	Mention the pros and cons of the following i) OWLDL ii) OWL FULL iii) OWL LITE	a	Knowledge	12
	iv) OWL DLP Tabulate the comparative analysis of web	a	Knowledge	6+6
,	programming languages for providing and representing the semantics in web services (OR)			
b)	Evaluate the design principles of Web Services Modeling Ontology	a ,	Knowledge	12
30. a)	Describe the P2P Discovery architecture in detail with a neat sketch	а	Knowledge	12
b)	(OR) Elaborate the conceptual model for service	a	Knowledge	12
31. a)	discovery with a neat sketch Formulate the axiomatic semantics for creating optional patterns in SPARQL (OR)	r a, b	Knowledge & Apply	12
b)	Discuss the top level elements of WSMO	a	Knowledge	12
32. a	in Web Services	n a	Knowledge	12
b)	(OR) Elaborate the discovery based on Semanti description	c a	Knowledge	12